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Abstrct: RUP (Reasoning Utility Package) is a collection of procedures for performing various

computations relevant to automated reasoning. RUP contains a truth maintenance system (TMS) which can

be used to perform simple propositional deduction (unit clause resolution), to record justifications, to track

down underlying assumptions, and to perform incremental modifications when premises are changed. This

TMS can be used with an automatic premise controller which automatically retracts "assumptions" before
Wsolid facts' when contradictions arisc and searches for the most solid proof of an assertion. RUP also

contains a procedure fior efficiently computing all the relevant consequences of any set of equalities between

ground terms. A related utility computes "substitution simplifications" of terms under an arbitrary set of

unquantified equalities and a user defined simplicity order. RUP also contains demon writing macros which

allow one to write PI.ANNI R like demons that trigger on various types of events in the data base. Finally

there is a utility for reasoning about partial orders and arbitrary transitive relations. In writing all of these

utilities an attempt has been made to provide a maximally flexible environment for automated reasoning.
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I. INTRODUCTION

RUP (Reasoning Utility Package) is -a collection of utilities relevant to automated reasoning. RUP

contains a truth maintenance system (TMS) which can be used to perform simple propositional deduction

(unit clause resolution), to record justifications, to track down underlying assumptions, and to perform

incremental modifications when premises are changed. RUP also provides a fast system for performing

deductions concerning equalities. The equality system contains routines which "intcrn" expressions. 'Iis

system also performs all deductions which can be made purely via substitution of equals for equals and can

simplify terms under a large class of simplicity orderings. RUP also contains mechanisms for writing

PI .ANN FR-like demons. 'Ilie demons created via this package can be compiled as ordinary lisp finctions in

which the pattern matching mechanism is open coded into the definition of each such demonic function.

In designing the RUP environment an attempt has been made to maximize the flexibility of the utilities

and allow them to interact effectively with user defined systems. Thus there are many "hooks" which allow

the user to modify RUP in different ways. For example hooks are provided for installing user defined

backtracking functions and user defined pattern directed invocation mechanism. There is also a general

control methodology adopted in RUP which associates queues with invariants. 'he demonic triggering

mechanisms provided by RUP allow the user to define his own queues and invariants and to maintain those

invariants by having forms quened demonically when an invariant is violated. RUP provides a simple data

base in the form of interned expressions but users typically define their own data structures and define

inariants which associate their data structures with those provided by RUP.

This document describes the major functions in RUP and examples of their use. The description of each

function is prefaced by the name of the function in bold letters followed by the list of arguments taken by that

function. RUP is implemented in both ISP Machine lISP and in MACLISP. There are two versions of the

TMS one which implements a semi-automatic certainty based premise controller and one which leaves

premise control entirely to the uscr. One can load RUP into LISP by loading whichever of the following files

is appropriate (the files reside on MIT-Al):

AI:RUP;RUP > LISP machine RUP without premise controller

AI:RUP;RUPP > LISP machine RUP with semi-automatic premise control

AI:RUP;MRUP > MACLISP RUP without premise controller

AI:RUP;MRUPP > MACLISP RUP with semi-automatic premise control

The LISP machine versions loads into the package RUP and all symbols in this manual which do not

have an explicit package prefix reside in the RUP package. In the MACLISP version package prefixes are

simply interpreted as part of the character name.
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2. SOME SIMPLE SCENARIOS

This section is intended for first time users who want to use RUP in the most straightforward manner

possible. A series of scenarios is presented each of which is intended to demonstrate some feature of the top

level RUP environment. The reader qhould be cautioned against just reading these scenarios and not reading

the remainder of the manual. There arc many utilities which are not demonstrated in these scenarios.

Farthermore the scenarios emphasize the use of RUP as a programming language and leave out the important
view of RUP as a utility package.

The first scenario demonstrated the simple propositional reasoning facilities and the explanation

generation mechanisms.

The second scenario demonstrates how the simple propositional deduction mechanisms can be extended
with a refutation mechanism invoked by the top level function try-to-show while the third scenario shows the

Scenario 1.

(assert '(:-> p q))

(assert '(:-> q r))

(assert p)

(why 'r)
"R IS :TRUE FROM:"

"1 Q IS :TRUE"
"2 (:-> Q R) IS :TRUE"

(why 1)
"Q IS :TRUE FROM:"

"1 P 1IS :TRUE"

"2 (:-> P Q) IS :TRUE"

(why 1)
"P IS :TRUE AS A PREMISE"

(why 0)
"Q IS :TRUE FROM:"

"I P IS :TRUE"
"2 (:-) P Q) IS :TRUE"

(why 0)
"R IS :TRUE FROM:"
"1 Q IS :TRUE"

"2 (:-> Q R) IS :TRUE"

(why 2)
"(:-. Q R) IS :TRUE AS A PREMISE"
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substitution capabilities of the system.

Thc final scenario demonstrates the use of simple demons. Of course demons are not normally defined

by typing them into the top level RUP environment. Each pattk.rn directed demon has a trigger pattern, a

triggering condition keyword (such as :intem) and a queue on which the invocation of the body is placed

when the triggering occurs. The symbol *lasic-queues* is bound to a list of queues which are emptied by

certain top level functions such as assert and why. 'The body of a demon may be any list of LISP expressions.

'llia macro lconst constructs clauses in the TMS corresponding to the assertions it is given. Constructing a

clause in the TMS is different from asserting an implication: specifically clauses never appear in explanations

while asserted implications do.

Scenario 2.

(assert '(:-> p r))

(assert '(:-> q r))

(assert '(:or p q))

(why 'r)
"I DON'T KNOW WHETHER OR NOT R IS :TRUE"

(try-to-show 'r)

(why 'r)

"R IS :TRUE FROM:"

"1 (:- P R) IS :TRUE"

"2 (:> Q R) IS :TRUE"

"3 (:OR P Q) IS :TRUE"

Scenarlo 3.

(assert '( (f a b) a))

(why (a (f (f a b) b) a))

"(- (F (F A B) i) A) IS :TRUE FROM:"

"1 (- (F A B) A) IS :TRUE"
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Scenario 4.

(aetq Ouaer-queue* (make-fito))

(setq *basic-qjaeues* (append *baaic-queuec* (list *user-queu.*)))

(notice (intern (dog ?x)) *user-queus*
(1const (:-> (dog ?x) (mamal ?x))))

(notice (intern (hawk ?x)) *user-queue*
(lconst (:-> (hawk ?x) (bird ?x))))

(notice (intern (mammal ?x)) *user-queue*
(lconst (:not (:and (manual Ti) (bird ?x)))))

(assert '(dog fido))

(why '(hawk fido))
"(HAWK FIDO) IS :FALSE FROM:"
"1 (BIRD FIDO) IS :FALSE"

(why 1)
"(BIRD FIDO) IS :FALSE FROM:*
"I (MAMMAL FIDO) IS :TRUE"

(why 1)
"(MAMMAL FIDO) IS :TRUE FROM:"
"1 (D)OG FIDO) IS :TRUE"

(why 1)
"(DOG FIDO) IS :TRUE AS A PREMISE"
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3. TIE TRUTl MAINTENANCE SYSTEM

A truth maintenance system is a utility which operates on an assertional data base (a collection of TMS

nodes) and has at least the following fiur properties:

1) It can perform some form of propositional deduction from propositional premises

(propositional deduction does not involve quantification).

2) It records justifications for deduced assertions and can generate explanations for those

assertions.

3) It can incrementally retract deductions when premises are retracted so that all "true"

assertions in the data base are either premises or follow logically from the premises.

4) It can perform "dependency directed backtracking". That it to say that when a contradiction

arises it can use the recorded justifications to track down the premises underlying that

contradiction. Furthermore when one of these premi3es is retracted it can use the contradiction

to deduce the negation of the retracted premise.

This section describes the functionality of RUP's TMS in detail. The first part of this section describes

the association between queues and invariants which is used in much of RUP. The second part describes the

two basic data structures used in the TMS. The third describes the basic TMS invariants which form the major

specifications for the functionality of the TMS. The fourth part describes the maj.qr functions defined in the

TMS. Ibe fifth part describes TMS demons.

3.1. Queues and Invariants

Much of RUP is specified by stating invariants which should hold in the RUP environment. Several of

I'- -P invariants arc associated with queues, such that for each violation of the invariant there is some entry on

the queue that can be used to correct that violation. Thus when a queue has been emptied the invariant

associated with that queue must hold. For example there is a TMS invariant which says that for each

contradiction in the TMS there is an entry on the queue *hacktracking-invariant*. While there are many

TMS invariants, the only user visible queue associated with these invariants is *backtracking-invariantO.

(There are other user visible queues which are associated with other RUP invariants.) The basic primitives for

constructing and manipulating all RUP queues are described here.

W

d~
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make-lifo 0

This function returns a new first in first out queue.

frifo-push (item queue)

ibis function pushes an item on a fifo queue. Each item on a queue must be a list of a

function followed by a list of arguments. Thus a particular queue entry item can be "run" by

evaluating:

(apply (car item) (cdr item))

ifo-emipty? (queue)

'Ilius predicate is non-nil just in case the given queue is not empty.

run-queues (queue-list)

'Ihis function takes a list of queues and empties them by "running" the items on the

queues. [his function iteratively takes the next item of the first non-empty queue in the given

list of queaes and runs that item. Note that in running one item more items may be queued.

Thus a queue which was empty at one iteration may not be empzy on the next iteration. On each

iteration this function takes the first item off the fiist non-empty queue. The function terminates

when all queues are empty.

lThe order of the queues in the given list of queues imposes a "priority" on the queues.

Items on the second qucue will only he run in environments in which the first queue is empty.

Thus if there is some invariant associated with the first queue items on the second queue will

only be run in an environment in which that invariant is in force.

a*basic-qucues* variable

This variable is bound to a list of queues and can be passed as an argument to

multi-fifo-,mpty. The default value of this variable is:

(list *equality-invariants* *rup-top-level* *backtracking-invariant*)

The iariables *equality-invariants*, *rup-top-level*, and *backtracking-invariant* are all

set t) queues in the default RUP environment.
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3.2. Nodes and Clauses

I'hcre are two basic data structures used in thc TMS: TIMS-nodes and clauses.

3.2.1 TVMS NOi)ES

"N IS-nodc structure

(defstruct (tms-node (:type :named-array))
assertion

(truth ':unknown)
support
true-noticers
false-not icers

change-noticers
neg-clauses
pos-cl auses
default
defaul t-cert
certainty
(node-plist (ncons nil))
(node-extension (funcall 0make-node-extension)))

'Ilic slots of tins-nodes is described below:

assertion A uns-node is intended to represent a proposition or assertion of some form. The

assertion slot is not used by the TMS directly but is intended to hold the name of the assertion.

In RUP the assertion slot holds the term whose print name is the name of the assertion. Terms

are described in the section on the equality system.

truth This slot always contains one of the atoms :unknown, :true and :false.

support This slot is either nil or contains a clause which is the justification for the truth of this

node. Only nodes whose truth is either :true or :false have non-nil support slots. This slot is

described in more detail in the section on TMS invariants.

true-noticers, false-noticers. and change-noticers These slots contain demons which are queued

when certain events occur in the TMS. These slots are described in more detail in the section on

tins noticers.

meg-clauses For any TMS node n the neg-clauses of n is a list of all those clauses c such that the

pair (n. :false) is a member of the clause-list of c. (See the description of clauses.)

pos-clauses For any TMS node n the pos-clauses of n is a list of all those clauses c such that the

pair (n. :true) is a member of the clause-list of c. (See the description of clauses.)
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default I[is slot is only used in the TMS with the semi-automatic premise controller. 'Ibis slot

is either nil or contains a default truth value which is either :true or :false. This slot is described

in more detail in the section on TMS invariants.

default-cert This slot is only used in the TMS with the semi-automatic premise controller. If the

default slot is non-nil then this slot contains an integer between the values of the special

variables *min-eert* and *max-cert* inclusive. Ibis slot is discussed further in the section on

TMS invariants.

certainty This slot is only used in the [MS with the semi-automatic premise controller. If the

truth of the node is not :unknown then this slot contains the minimum ccrtainty of the premises

which underly the truth of the node.

node-plist his slot contains a disembodied property list (LISP Machine manual pp. 71-72) and

is initialized to (neons nil). This allows the user to define properties which are not already

structure slots. A new "slot" for TMS nodes can be defined as follows:

(defmacro new-slot (node)
'(get (node-plist ,node) 'new-slot))

Since the node-plist slot is used internally in RUP it is important that the user not violate the

conventions for property lists in using this slot.

node-extension This slot is not used internally in RUP and is available for use by the user. The

value of this slot is initialized to (funcall *make-node-extcension*) so that the user can control the

initial value. *make-node-extension* is initialized to a function which always returns nil. It is

intended that the user define his own structure which extends the node data structure' and

initialized this slot to that structure which could be done as follows:

(defstrict (node-extension)
fl
1 2

(defun oxtension-maker ()
(make--node-extension))

(setq *riake-node-extenslon* (fsymeval 'extension-maker))

ir
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S 3.2.2 CLAUSES

A clause is a data structure which represents a logical disjunction. A clause should be thought of as

representing a constraint which says that at least one of a particular collection of items must be true. 'he

details of this data structure are described below.

clause structure

(defstruct (clause (:type :namod-array))
clause-I ist
psat)

clause-list This slot contains a list of pairs such that the car of each pair is a tnls-node and the

cdr of each pair is either the atom :true or the atom :false. A given pair is said to be true if the

truth of its car is the same as its cdr. Similarly a pair is said to be false if the truth its car is the

opposite of its cdr. For example if the truth of a node n is :false then the pair (n. :false) is said

to be true while the pair (n. :true) is said to be false. Since the truth of a TMS node can be

:unknown it can be the case that a given pair in the clause list is neither true or false. A clause

should be thought of as a disjunction which says that not all of the pairs in its clause-list can be

false.

psat This slot always contains a number which is the number of pairs in the clause list which

are not false. Any clause whose psat is 0 is called a.contradiction. A clause whose psat is 1 can be

used as a justification for assigning a truth value to the node uflich is the car of the pair in the

clause-list which is not false.

3.2.3 SOME CONVENIFNT MACROS

The following macros are convenient for testing the truth of a node:

true? (node)

The form (true? node) macroexpands to (eq ':true (truth node)).

false? (node)

(false? node) = => (eq ':false (truth node))

unknown? (node)

(unknown? node) = => (eq ':unknown (truth node))
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3.3. The TMS Invariants

'Tlhcre are three groups of invariants concerning the TMS data structures which are maintained by the

'IMS. 'lhe first group of invariants, the justification invariants, ensure that every deductions has a well

founded justification (i.e. that the deduction performed by the system is sound). The second group of

in variants, the deduction invariants, guarantee that deduction is closed under a simple deduction rule (which

is equivalent to unit clause resolution). A final backtracking invariant can be used to ensure that the set of

premises in the system is "consistent" in that no contradiction can be deduced using the TMS's deduction

machinery. Some of the justification and deduction invariants only apply to the I'MS with the semi-automatic

premise controller. Only the backtracking invariant involves a user visible queue.

3.3.1 THi JUSTIFICATION INVARIANTS

Only nodes whose truth slot is either :true or :false can have non-null support slots and when such a

support slot is non-null it contains a clause which is the justification for the truth value of the supported node.

luach clause should be thought of as a disjunction (see the above description of the clause data structure). 1"he

basic idea behind justifications is that truth value of the justified node (the value of its truth slot) follows

logically from the justifying clause and the truth values of the other nodes in that clause. All clauses are

interpreted by the system as logical tautologies, thus while the truth values assigned tn nodes can be retracted,

clauses cannot be removed. Similarly, in generating explanations the system will list assignments of truth

values to nodes but will not mention the existence of clauses. The interpretation of clauses as tautologies is

described in more detail in [McAllester 80b]. A 'IMS node whose truth is either :true or :false (i.e. not

:unknown) but which does not have any supporting clause (i.e. its support slot is nil) will be called a premise.

Local Support Invariant: This invariant states that the truth value which has been assigned to a

supported node n follows logically from the clause which is the support of n and the truth values

which have been assigned to the other nodes appearing in the clause. Specifically let n be any

[MS node whose truth is either :true or :false and whose support is not nil. 'he support of n

must contain a clause c such that the psat of c is I (there is exactly one pair in the clause list of c

which is not false) and such that the pair in c which is not false contains n (the supported node).

Well Founded Support Invariant: This invariant states that support trees are acyclic, i.e. that no

node is a support node of itself. Specifically let n be any 'MS node whose truth is either :true

or :false and whose support is some clause c. The nodes other than n which appear in the.clause

list of c will be called the immediate support nodes of n (a premise has no immediate support

nodes). A node m will be called a support node of n if it is either an immediate support node of

n or it is an immediate support node of some node which is a support node of n (thus the

support nodes of n are those.nodes appearing in the support tree of n). The premises which are



3. Tie TmS 11- April 1982

support nodes of n will be called the support premises of n.

Certainty Justification Invariants: Ihese are two invariants which apply only to thc TMS with

the semi-automatic premise controller. To define the first certainty justification invariant let n be

any premise. Thc truth of it must be the same as the default of n (which must not be nil) and the

certainty of n must be the same as the default-certainty of it (which must also not be nil). In

other words any premise must be a premise by virtue of the fact that it has a default value and

the certainty of the premise is the default certainty. To define the second certainty justification

invariant let it be any node whose truth is either :true or :false and whose support is sonic clause

c. "lhe certainty of n must be the minimum of the certainties of all of i's immediate support

nodes. This together with the well founded support invariant implies that the certainty of n is

the minimum of the certainties of all of the support premises of n.

3.3.2 TIE IiEDUCTION INVARIANTS

"llie TMS performs simple propositional deduction from clauses and the truth values which have been

assigned to nodes. 'llc deduction perfoned is not complete (i.e. there are valid deductions which are not

made). Ilowever the deduction processing is incremental and is guaranteed to terminate in linear time in the

iunber of clauses in the system. The basic deduction invariant is that all deductions which can be made from

a single clause and assignments of truth values to nodes have been made.

Main Deduction Invadant: Let c be any clause whose psat is I (any clause such that there is

only one pair in its clause list which is not false). Let p be the pair in c which is not false and let

n be the node which is the car of p. The main deduction invariant is that the truth of n is the

same as the cdr of p. If the truth of n was :unknown then the clause c could be used to deduce

that it must be assigned the truth value which is associated with it in p. The main deduction

invariant says that all such deductions have been made.

Default Value Invariant: This invariant applies only to the TMS with the semi-automatic
premise controller. It ensures that any node which has a default truth value and which cannot

be proven to have the opposite of its default value does in fact take on its default value.

Specifically let n be any node whose default is not nil (i.e. any node with a default truth value).

'The default value invariant is that the truth of n must be either :true or :fair and that the

certainty of n must be at least as large as the default-cert of n (which must not be nil).

Furthermore if the truth of n equals the default of n and the certainty of n equals the default-cert

of n then the support of n must be nil (the node n must be a premise).
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Deduction Certainty Invariant: This invariant applies only to the TMS with the semi-automatic

premise controller. It says that each node is given the strongest (most certain) justification which

can be found via the propositional deduction mechanisms used by the TMS. Specifically let c be

any clause whose psat is 1, let p be the pair in c which is not false, and let it be the node which is

the car of p. The deduction certainty invariant is that the certainty of n is not smaller than the

minimum of the certainties of the nodes in the false pairs of c. To better understand this

invariant consider the relationship between the clause c and the node it. By the main deduction

invariant n must be assigned the truth value which is the cdr of p. However the support of n

need not be the clause c. Ifc is not the support ofn then c may provide an alternative method of

deducing the truth value of ni (the only problem wot&lc v', if using c for the support of n would

introduce a circular justification violating the well founded support invariant). If the certainty of

it were less than the certainty which would result from using c as the support of n then c

provides a "stronger" argument for the truth value assigned n and the support for n could be

strengthened by setting it to c (it can be shown that such "strengthening" :,ever introduces

circularities). The deduction certainty invariant says that all such possible strengthenings have

been done.

3.33 TIlE BACKTRACKING INVARIANT

Any clause whose psat is 0 is called a contradiction. Since each clause is interpreted as a tautological

disjunction, if all pairs in a clause c are false then the truth values which have been assigned to the nodes in

those pairs are mutually contradictory.

"]'e backtiacking invariant: This invariant is that for each contradictory clause c there is a list b

on the queue *backtracking-invariant* such that the car of b is the function which is the value of

the variable *backtracker* and the edr of b is a one element list containing c. Thus "running" b

is equivalent to evaluating: (funcall *backtracker* c).

*backtracker* variable

The value of this variable is a backtracking function which is used to construct the item

placed on the queue *backtracking-invariant* when a contradiction arises. The default value of

this variable is backtracker-default which is described below.

* backtracking-iniariant* variable

The value of this variable is the queue associated with the backtracking invariant.
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3.A. Major TMS Functions

This section describes the rMS functions which might be of interest to the user. It also describes some

parameters of the IMS which can be set by the user.

add-clause (clause-list)

'Ie clause-list must be a list of pairs each of which associates a TMS node with either :true

or :false. This function creates a clause with the given clause list and ensures all of the TMS

invariants by performing whatever deductions the clause allows and by queueing the

backtracking of any resulting contradictions.

node-add-clause (pos-nodes neg-nodes)

The pos-nodes and neg-nodes arguments must both be lists of TMS nodes. This function

first constructs a clause list by associating all the nodes in pos-nodes with :true and all of the

nodes in neg-nodes with :false. It then adds a clause with this clause list by calling add-clause.

implies (nodes node)

A call to this function of the form (implies nodes node) is equivalent to

(node-add-clause (list node) nodes). It adds a clause which represents the assertion that if all of

the 'I'MS nodes in the nodes argument are true then node should also be true.

contradictory (nodes)

A call to this function is equivalent to (node-add-clause nil nodes). It adds a clause which

says that one of the nodes must be false.

clause-cert (clause)

This function is only defined in the TMS with the premise controller. This function takes a

clause and returns the minimum certainty of the TMS nodes in the false pairs of that clause. The

justification certainty invariant says that the certainty of a supported node equals the clause-cert

of the support of that node.

make-premise (node truth-value)

This function is only defined in the TMS without the premise control mechanism. This

function forces the truth of the given node to be the given truth value which is required to be

either :true or :false. If the given node was previously assigned the opposite value then
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retraction is done before the new assignment is made. This function guarantees that all TMS
invariants arc maintained.

*min-cert*, *max-cert* variables

These are variables which may be set by the user. All certainties must be between the

values of *min-cert* and *max-cert* inclusive. The default values of *min-cert* and *max-cert*

are I and 5 respectively.

set-default (node value certainty)

This function is defined only in the TIS with the premise control mechanism. This

function sets the default of the given node to value and the default-cert of the given node to the

given certainty. 'Tis function guarantees that all TMS invariants arc maintained by performing

whatever truth assignments, retraction, deduction, and backtrack queueing that is necessary.

Thus if dhe truth of the given node was unknown before the call then the truth of the given node

will be set to the given value (which must be :true or :false).

rctract-premise (node)

This function is only defined in the TMS wiihoui the premise controller. This function sets

the truth of the given node to :unknown and guarantees the maintenance of all TMS invariants.

(Maintenance of the ;nvariants requires a retraction phase in which all nodes which depended

on the retracted node are retracted and a deduction phase in which all nodes which were

retracted are checked to see if some alternative support is available. To avoid circular

dependencies it is important that the retraction phase completes before the deduction phase

begins. To achieve this there is an internal queue associated with the deduction invariants.)

remove-default (node)

This function is only defined in the TMS with the premise control mechanism. This

function sets both the default and the default-cert of the given node to nil and maintains all TMS

invariants. Thus the given node will not be a premise after this function exits.

*view-node* variable

This variable is bound to a function which when applied to a TMS node returns a "name"

for that node. The default value for *view-node* is the function view-node-default which assumes

that the assertion of the node is a term (described in the section on the equality system) and

* returns the expression which that term represents.
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3view-clause (clause)

This function returns an "image" of the clause list of the clause in which each node has

been replaced by the "name" of the node as given by the valuc of *view-node*.

node-why (node)

This function generates an exph, nation for the truth value assigned the node. If the truth of

the given node is :unknown then a simple statement to that effect is generated. If truth of the

given node is :true or :false and its support is not nil then the generated explanation gives a

numbered list of the immediately support nodes and their truths. The argument to nod-why

may be a number in which case an explanation is generated for the support node corresponding

to that number in the previous explanation. If the argument 0 is given then the explanation stack

is "popped". The following scenario demonstrates the use of this function.

(setq *view-node* '(lambda (node) (assertion node)))

(defun symbol-node (sym)
(let ((n (make-tms-node)))

(set sym n)
(setf (assertion n) sym)
sym))

(symbol-node 'p)

(symbol-node 'q)

(symbol-node '1(:-> p q)l)

(im*plies (list l(:-> p q)l p) q)

(make-premise I(:-> p q)l ':true)

(make-premise p *:true)

(node-why q)
"q is :true from"
"1 I(:-> p q)l is :true"
"2 p is :true"
t

(node-why 1)
"1(:-> p q)l is :true as a premise"

(node-why 0)
"q is :true from"
"1 I(:-> p q)l is true"
"2 p is :true"
t

(node-why 2)
"p is :true as a premise"

'(~L - ~-
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The node-why function allows the user to walk around the support tree of a node

investigating various support paths.

backiracker-default (clause)

T"his is the default value of the variable *backtracker* which is used in constructing

backtracking forns to place on the queue *backtracking-invariant* (see the section on the

backtracking invariants). This function takes a clause and if the clause is not a contradiction it

does nothing. Otherwise it first constructs a list of all the support premises of all the nodes in the

clause (all of the premises underlying the contradiction). In the TMS with the semi-automatic

premise controller this list is then filtered so that only those premises which have the least

certainty remain. One premise from the candidate premises is then chooses for retraction. If
there is only one candidate premise then this is the one chosen. If there is more than one

candidate premise then the value of *prenise-selector* is applied to the list of candidate

premises and the premise returned is the one chosen for retraction. (The fact that the value of

*premise-selector* may be called even in the TMS with the premise controller is the reason for

calling this premise controller semi-automatic rather than automatic.) The premise chosen for

retraction is retracted and then the negalion of that premise is deduced from the other premises

and the fact that the premises are mutually contradictory.

*prenise-sClector* variable

The value of this variable must be a function which takes a list of nodes and returns one of

them. This function is only called on lists of nodes where the current truth values of the nodes in

that list arc mutually contradictory. The default value of *premise-selector* is

premise-selector-default which types the list of nodes at the terminal and asks the user to select

one.

premises (clause-list)

This function returns a list of all the nodes which are premises which either appear directly

in ilse pairs in the clause-list or are support premises of a node in a false pair in clause-list. This

function can he applied to the clause list of a contradiction to get the set of premises underlying

the contradiction or it can be applied the clause-list of the support of a node to get the set of
premises supporting that node.

reverse-truth (node contradiction)

This function can be used to write backtracking functions. The given contradiction must

be a clause whose psat is 0 (a contradiction) and the given node must be a premise underlying
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that contradiction. 1his function forces truth of node to be set to the opposite of the value it has

when the function is called. All TMS invariants are maintained. Note that in thc TMS with the

premise controller a call to reverse-truth nonnally results in the other nodes underlying the

contradiction being the premises supporting the reversed value of the given node and therefore

the certainty of the node ends up being the minimum of the certainty of thes premises.

lowever if the given node has a default strength which is greater than the minimum strength of

the other premises underlying this contradiction, a problem arises. Specifically the default value

invariant says that the certainty of a node with a default value can not be less than the default

certainty. If such a problematic reversal is attempted it simply will not "stick" and the system

will end up in much the same state that it started in.

node-try-to-show (node value &optional refutation-queues split-nodes (certainty *min-cert*))

This function uses a refutation mechanism to extend the deductive power of the TMS. In

the TMS without the premise controller the given node must be a TMS node whose truth is

-unknown. In the TMS with the premise controller either the truth of the given node must be

:unknown or the certainty of the node must be less than the given certainty. This function

attempts to prove from the premises already in the TMS that the given node must be assigned

the given truth value. In the TMS with the premise controller this function attempts to prove

that the given node must be assigned the given value using only the premises of of certainty

greater than or equal to the given certainty. Thus this function can be used to search for a

stronger proof of a truth value assignment which is already in force.

The function node-try-to-show works by assuming the negation of the thing to be proven

and searching for a contradiction. It takes an optional list of refutation queues which are queues

to be emptied after the negation has been assumed. The assumption of the negation may trigger

demons which are placed on queues. Running those demons may lead to the deduction of a

contradiction based on the assumption which would otherwise not have been found. The

function multi-fifo-cmpty is used to empty the queues once the assumption has been made.

ibe function node-try-to-show also takes an optional list of split nodes. If split nodes are

provided then an attempt is made to prove that all assignments of truth values to the split nodes

imply the desired truth value and therefore that this value holds independent of the truth of the

split nodes. This is done by actually assigning all possible combinations of truth values to the

split nodes and for each such assignment using the refutation mechanism and the rqueues to try

to show that the negation of desired truth value leads to a contradiction.

The following scenario provides an example of the use of this function. The functions used

in this scenario are defined elsewhere in this manual. For the following example it is important

to note that if there is a constraint in the TMS which says that either p or q must be true, and p is

made false, then q will be deduced to be true. This is important when p is used as split node.
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(notice (:true (p ?x)) *some-queue*(1const (:-> (p ?x) (r ?x))))

(notice (:true (q ?x)) *some-queue*(lconst (:-> (q ?x) (r ?x))))

(assert *(:or (p a) (q a)))

(why '(r a))
"I DON'T KNOW WHETHER OR NOT (R A) IS :TRUE"

(node-try-to-show (virt-tms-node (term *(r a)))
.:true

(list *some-queue*)
(list (vlrt-tms-node (term '(p a)))))

'(r a))
"(R A) IS :TRUE FROM:"
"1 (:- (P A) (R A)) IS :TRUE"
"2 (:-> (Q A) (R A)) IS :TRUE"
"3 (:OR (P A) (R A)) IS :TRUE"

3.5. TMS Noticers

Each node has three noticer slots, true-noticers, false-noticers, and change-noticers, each of which
contains a list of "noticcrs". A noticcr is a cons cell whose car is a queue and whose cdr contains an item to be

placed on that queue when the noticer "triggers". Under certain conditions all of the noticers in a given
noticer slot will be triggered and the noticer slot will be set to nil. Thus a given noticer in a given slot will only

be triggered once. True noticers (the cells in the truc-noticers slot) are triggered whenever the node becomes
true. False noticers are triggerca whenever the node. becomes false and change noticers are triggered

whenever any change is made either to the truth or the certainty of the node.

it is often desirable to have a certain demon run whenever a node becomes true rather than just the first

time that node becomes trite. 'here is a straightforward way of doing this which is exemplified by the
jollowing scenario. When the below function notice-problem is applied to a queue and a node it first checks to

see if the node is true and if so it applies a special handler to that node. Independent of whether or not the

node is true however it places a trtae noticer on the node using the given queue. This noticer is such that if the

node is ever set to true in the future then this function will be called again with the same arguments.

(defun notice-problem (queue problem-node)
(if (eq ':true (truth problem-node))

(problem-handler problem-node))
(push (cons queue (list 'notice-problem queue problem-node))

(true-noticers problem-node)))

(notlce.-problem *some-queue* n)
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4. TIlE EQUALITY SYSTEM
4-

'I'hc equality system is a collection of utilities for handling the substitution of cqual , for equals. l'he

description of the equality system given here is divided into three parts. The first describcs terms and the

interning of terms. Terms are analogous to a LISP atoms in that they are interned so that. one can guarantee

that there are no two distinct terns with the same print name. Unlike LISP atoms however terms can be

cither atomic or can contain subterms which can be substituted for in the equality systcm. The second part of

this section describes the equality and equivalence class data structures and the c.4uality invariants which

specify the substitution computations. 'I'he final part of this section describes simplification utilities which

allow the user to define a somewhat arbitrary simplicity order on terms and then computes the simplest term

which can be equated with any given term via the substitution of equals for equals.

4. 1. Terms and Interning

Terms are defined as follows:

(defstruct (term (:type :named-array))
(term-hash (hash-count))
subterms
parents
eqs
next-canonical
eq-next-canonical -eqs

class-data
term-tms-node
user-referenced?
(term-plist (ncons nil))
(term-extension (funcall *make-term-extenslon4)))

The various slots of this data structure are described below.

term-hash This is an integer which is unique to this term. This integer is used as a hash value

for the term.

subterms This slot holds two basically different kinds of information depending on the kind of

term involved. If the term is a composite term then this slot holds a list of the subterms of the

term (a list of term data structures). For example a term whose print name is (f a b) would have

subterms whose print names are f, a, and b respectively. If the term is "atomic" then it has no

subterms and the subterms slot contains the print name of the term. There are three different

kinds of atomic terms. First of all there are symbols whose subtenms slot is simply a LISP

symbol. Second there are numbers whose subterm slot is a LISP number. Finally there are

quotations whose subterms slot contains a LISP expression whose car is the symbol quote.

Numbers and quotations are self-rejirential terms. This means that these terms are interpreted

as denoting themselves. Specifically the term whose print name is the number 1 is taken to
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denote the number 1 and the term whose print name is the expression (quote (f a)) is taken to

denote tie expression (f. ScIf referential terms play an important role in the equality

invariants.

parents This slot contains a list of all those terms which contain this term as an immediate

subterm (i.e. all those terms which contain this tern in their subterms slot). 'his is used in the

equality algorithms described in the next part of this section.

eqs This is a list of all the equality data structures which equate this term with some other tenn.
This slot is maintained by the function make-eq described elsewhere.

next-canonical This slot is either nil or contains a "more canonical" term. The function e

described below takes a term t and returns its "canonicalization" which is t if the ncxt-canonical
of t is nil and otherwise it is the canonicalization of the next-canonical of L Two terms are

equivalent just in case they have the same canonicalization.

eq-next-canonical-eqs The eq-next-canonicol of a term t is not nil just in case the next-canonical

of t is not nil in %hich case the eq-next-canonical-eqs of t contains a list of equality data
structures which together imply that t is equal to the next-canonical of t.

class-data The class-data slot of a term t is not nil whenever there is some term s whose
next-canonical is t. If the class-data of a term t is not nil then it is a class-data data structure

which describes the set of terms whose next-canonical is t. The class-data data structure is
described in section 3.2.

term-tms-node This slot is either nil or contains a TMS node representing this term. If a.TMS

node is present then the term represents an assertion. The function virt-tins-node described

below takes a term and always returns a TMS node representing that term. For the equality
in' ariants to be maintained it is important that all TMS nodes representing terms be created via

virt-tins-node.

user-referenced? This slot is a flag which is non-nil just in case this term has been returned as a
value of the function term oi the function term-hashcons. This is needed because the equality

system creates internal terms via the substitution of equals for equals and it is not desirable to
run demons on these terms. Specifically the value of the variable *new-term* (described

elsewhere) is only applied to terms which are returned from term or term-hashcons.

term-plist This slot is perfectly analogous to the node-plist slot

term-extcesion This is perfectly analogous to the node-extension slot of TMS nodes.

Jt
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'Ihe following functions and variables are rclevant to tenns and interning.

virt-tins-node (term)

'Ihis function returns a TMS node that has been associated with the term. In order to

maintain certain 'TMS-Equality interface invariants it is important that this be the only way in

which the tren-tnis-node slot of tertrs is set.

atomic? (term)

This predicate is true of a term just in case the term is a symbol, a number, or a quot.-.tion.

self-referential? (term)

This predicate is true of a term just in case the term is a number or a quotation.

term-tree (term)

This function returns the print name of the term. Curried functions are treated specially

(the print form is uncurried) as is described in the section on curried fiunctions.

term (expression)

'his is the basic function for interning expressions as te:nns. The expression argument can

either be a number, a symbol, a term, or an arbitrary expression built out of numbers symbols

and terms. If the expression is a term then the expression is simply returned. The expression is

said to be atomic if it is a number or a symbol or the car of the expression is the symbol quote. If
the expression is not atomic then this function first recursively computes the list of subterms
which is the value of (mapear'term expression). It then returns the result of applying

term-hasheons (described below) to this list of subterms. If the expression is atomic then if there

is already a term whose print name is the expression then that term is returned. If there is not
already such a term then one is created and returned. The value of the variable *new-term* is

applied to all terms created in this way. This function maintains all of the equality invariants

described later.

term-hashcons (subterms)

This function takes a list of subterms and returns a term corresponding to that list of

subterms. This function first applies the value of the variable *intem-eanonicallW* (described

below) to the list of subterrns. The value of Ointem-canonicalize* must be a function which
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returns either a term or a list of subterms. If a tcnn is returned then that term is simply returned

from tenn-hashcons. If a list of subterms is returned then this function looks for an already

existing term which has this list of subterms in its suhterms slot (a hash table is used here for

efficiency). If such a term exists it is returned. If no such term exists one is created and returned.

Thcie value of the variable *new-terni* is applied to all terms created in this way. This function

maintains all equality invariants.

*intern-canonicalize* variable

ihis variable must be bound to a function which takes a list of terms and returns either a

term or a list of terms. This is used to map different expressions for the same thing into identical

term structures directly in the interning process. For example if a function f is known a-priori to

be an a commutative function then the expression (r a b) must denote the same thing as the

expression (f b a). 'Ihe default value of *intern-canonicalize* is intcm-canonicalim-default which

is described below.

intern-canonicalize-default (subterms)

Tcrms representing functions of two arguments can be marked as being either associative,

commutative, or both (see the m.cros associative? and commutative? dcfined below). For

example the term whose print name is + is marked as both associative and commutative. Tbe

function intum-caionicalize-default takes a list'of subterms the first of which is a term

representing an operator (function or predicate). If the operator term is not marked as being

either associative or commutative then the list of subterms is simply returned by

intern-canon iia lize-default. If the operator term is marked as associative then the argument

subterms are searched for an application of that same operator and if one is found the

arguments in that application are promoted to top level arguments. For example if f is marked as

an associative operator then (f a (f b c)) is converted to (f a b c). Since f is binary (only binary

functions should be marked as associative or commutative) the term (f a b c) is interpreted by

conention as (f(f a b) c). After the promotion of "internal" arguments for associative operators

this function checks to see if the operator is marked as commutative. If so then the arguments

are sorted by their term-hash slots. Finally the resulting list of subterms (including the operator

term) is returned from intern-canonicalize-default.
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associative? (op-term)

This is a macro which expands as follows:

(associative? op-term) => (get (term-plist op-term) 'associative?)

To mark an operator term as associative one simply evaluates:

(sef (associative? op-term) t)

conau1utative? (op-term)

This macro is just like associative?.

*new-terni* variable

The value of this variable must be a function which is applied exactly once to every term

which is ever returned from term or term-hashcons. The default value of this variable is

new-term-default. For the symbols =, ->, and, or. etc. to be given the proper interpretations in

the top level RUP environment the function new-term-default should be called on all terms

returned from term-hashcons. Thus any function which the user assigns to *new-term should

call new-term-default on its argument if the standard interpretation of the above symbols is

desired.

new-terni-default (new-term)

This is the default value of the variable *new-term*. The function new-term-default queues

applications of hashcons noticers. Hashcons noticers are functions which are associated with an

operator term and a queue. When new-term-default is applied to a term u it checks the first

subterm of u (u's operator) to see if there are any hashcons noticers associated with that operator

(if the given new-term is atomic then new-term-default does nothing). For each such noticer an

application of that noticer to u is placed on the queue associated with the noticer. Noticers are

stored on the hashcons-noticer property of operator terms. Whenever new-term-default is

applied to a non-atomic term u the term u is added to the applications property of the operator

of u.
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add-hashcons-noticer (op-tcrm noticer queue)

'Ibis function associates the given noticer (which must be a function of one argument) with
the given op-term and the given queue. This function queues applications of the given noticer to

all currently existing applications of the given op-term.

h. shcons-noticers (op-term)

This is a macro which expands as follows:

(hashcons-noticcrs op-tcrm) = => (get (ierm-plist op-tcrm) 'hashcons-noticers)

applications

This is a macro which expands as follows:

(applications op-term) > = (get (term-plist op-term) 'applications)

4.2. Equalities., Equivalence Classes, and the Equality Invariants

The equality system maintains a congruence relation on terms. The following function can be used to
determine whether or not two terms arc congruent under this relation.

e (term)

"'his function is defined as follows:

(defun e (term)

(if (next-canonical term)
(e (next-canonical term))
term))

Two terms are congruent just in case they have the same image under e.

The following defines one of the basic data types in the equality system.

(defstruct (equality (:type :named-erray))
torm2
term2
dependent$
eq-node)

ihe slots of the equality data structure are described below.

terml, tenm2 These slots contain the terms equated by the equality.
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dependents Ibis slot contains the list of all terms which contain the equality in their

eq-next-canonical-eqs slot.

eq-node This slot holds the tins node which represents the equality.

Ie equality system is driven by changes in the truth values of the 'IMS nodes associated with equalities.

'lierefore the only interesting top level functions for the equality system are for querying the data structures

involved.

make-eq (terml term2 tins-node)

This function should be used uniformly instead of the make-equality macro constructed by

defstruct. This function creates an equality data structure and sets the terml, term2, and eq-node

slots of that structure to the arguments provided. It also updates the eqs slot of both terms.

Finally it places a change noticer on the given uns-node which will are needed to ensure the

equality invariants.

true-eq? (equality)

This macro expands as follows:

(true-eq? equality) = -> (eq ':true (truth (eq-node equality)))

equated-support (terml tcrm2)

If terml and term2 are not in the same equivalence class then this function returns nil. If

terml and term2 are in the same equivalence class then this function returns a list of TMS nodes

which represent equalities implying the equivalence of terml and term2.

same-image? (terml term2)

This predicate is non-nil just in case term1 and term2 have the same number of subterms

and those subterms are equivalent in pairs.

class-members (term)

This function returns a list of all terms which are congruent to the given term (all interned

terms that is).
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equivalents (term)

This function returns a list of terms in the equivalence class of term such that no two terms
in that class have the same image (i.e. their subterms are equivalent in pairs). Thus the list of
terms returned is the set of "independent" terms equivalent to term.

A term u is said to point to a term t just in case either t is the next-canonical of u or in case the
next-canonical or u points to t. A class-data data structure c is always contained in the class-data slot of
exactly one term t called the owner of c. If c is the class-data oft then c describes the set of terms which point
to t. ibis data structure is defined as follows:

(defstruct (class-data)
member s
member-referents

(size 1)
(class-plist (ncons nil)))

]'he slots of these structures have the following functions:

members The mnembers slot of c is a list of terms whose next-canonical is the owning term t of c.
Note that this is a subset of all the terms which point to t.

member-refernts The member-referents slot of c contains a list of all sell referential terms
which point to the owner of c.

size 'he size of c is one plus the number of terms which point to the owner of c.

class-plist This slot is analogous to the node-plist slot of TMS nodes and the term-plist slot of
terms.

The following are the Fquality Invariants. These invariants are associated with the queue
•cquality-invariants* and are only guaranteed in environments in which this queue has been emptied.

Equality Justification Invariant: For any term t with a non-null next-canonical slot the set of
equalities in the eq-next-canonical-eqs slot of t are all true equalities (the truth of their eq-oda
is :true) and this set of equalities implies that the u is equal to the next-canonical of u.

Congruence Deduction Invariant: For any term t let subterm-image(t) be the term which results
from replacing each subterm u of t by e(u) (if t is atomic then subterm-image(t) is just 1). The
congruence invariant is that for every term t, subterm-image(t) is an interned term which is in
the equivalence class of L "Ibis invariant implies that any two terms whose subterms are
equivalent in pairs are themselves equivalent. It also implies that any two terms which can be
shown equivalent via the substitution of equals for equals are in fact equivalent. For efficiency

i'V.
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reasons this invariant is not maintained on terms which are applications of =. or. -4, and, not,
and iff. Instead the TMS can be used in conjunction with refutation to show any derivable

logical equivalences between these terms.

True Equality Decduction Invariant: 'Me terms of any true equality are both in the same

equivalence class.

Derived Equality Deduction Invariant: Let e be any equality such that the terms of e are both in

the same equivalence class. 'Iliere is a clause in the TMS which states that some set of true

equalities imply e. Thus ifc is :false there is a contradiction in the TMS, and if e is not :false it

must be :true (as opposed to unknown).

Assertional Tenn Invariant: Let t be any assertional term (a term with a term-tms-node). Ift has

a next-canonical then the next-canonical of t is also an assertional term and there are clauses in

the TMS which state that the eq-next-canonical-eqs of t imply the equivalence of the

term-tnis-node of t and the temi-tins-nodc of the next-canonical of t. This invariant ensures that

any two assertional terms which are in the same equivalence class are constrained to be logically

equivalent.

*equate-state* variable

This variable is set to a new value each time the congruence relation on terms is changed.

This is useful for memoizing computations which depend on the congruence relations. A
memoized value is valid as long as *equate-state* has the same value that it had when the

memoization was done.

4.3. Simplification

The functions described here allow the user to define a simplicity order on terms and then efficiently

simplify terms. Specifically let u be some term. The functions described compute a term which is at least as

simple under the user defined order as any term which can be equated with u via the substitution of equals for
equals based on the premise equalities. For example suppose one has the function symbol + which is to be

interpreted as standard addition over the integers and consider a term of the form (+ (+ x y) z). If this term

could with a term composed entirely of numerals and the function symbol + then that term could be
"evaluated" to yield a numeral equivalent to the original term. The problem of finding an expression for a

given term in terms of some subset of "allowed" terms can be solved by defining a simplicity order in which

terms containing only allowed symbols are simpler than terms containing symbols which are not allowed.

A simplicity order is defined by setting the following three variables to appropriate functions.
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*atomic-lcvcl* variable bound to function with argument list: (atomic-term)

This variable must be bound to a function which takes an atomic term and returns a

"level". Levels can be any data structures so long as they are consistent with the values of the

next two variables. 'he default value of this function is atomic-levcl-default described below.

The default levels are integers.

*subterm-levcl* variable bound to function with argument list: (subterm-levels)

This variable must be bound to a function which takes a list of levels and returns a level
which is the level of any term whose subterms have the corresponding levels. 'Me default value

of this variable is subterm-level-default which simply computes the maximum of the subterm

levels.

*smaller ?* (levell level2)

This variable must be bound to a predicate which takes two levels and returns a non-nil

value just in case the first level is "smaller" (i.e. simpler) than J." second. 'he default value of
this function is the lisp less than function <.

The termination and correctness of the simplification procedures depend on some assumptions about

the simplicity order. These assumptions are as follows:

WVell Foundedness Assumption: There can be no infinitely decreasing chains of levels.

Monotonicity Assumption: Let s and t be any two terms with the same number of subterms

such that s is simpler than t (has a smaller level). There must be some pair of corresponding
subtcrms s' and t' of s and t respectively such that s' is simpler that t'. In other words the

function bound to *subterm-level must be non-decreasing in each sublevel argument.

Subterm Simplicity Assumption: No term can be simpler than a term it contains as a subterm.

Pseudo Total Order Assumption Let I1 and 12 be any two levels such that I1 is less than 12. No

third level 13 can be unrelated to both 11 and 12 (i.e. 13 must be either smaller or greater than

either I1 or 12).

new-simpliflcation-state 0

This function of no arguments must be called each time the user changes the simplification

order.
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atmic-level-default (atomic-term)

This function is the default value of *atomic-level*. It takes an atomic term and returns a

non-negative integer. If the term has an atomic-level property then the value of this property is

returned. Otherwise the number returned is 0 for self referential terms and 1000 for all other

atomic terms.

atomic-level-prop (term)

This is a macro with the following expansion property:

(atomic-level-prop term) => (get (term-plist term) 'atomic-level)

Thus to set the atomic level of a term one simply evaluates:

(setf (atomic-level-prop term) n)

However whenever this is done the function new-simplification-state should be called.

sbound (term)

This function takc a term and returns an expression which is the print name of a term (not
necessarily an interned term) which is at least as simple as any term which can be equated with

the argument via the substitution of equals for equals using the premise equalities
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5. THE TOP LEVEL RUP ENVIRONMENT

The top level RUP environment provides several convenient user level functions such as assert, retract,

and why each of which takes expressions and converts them to assertional terms. Demons which trigger on the

creation of terms are used to provide automatic interpretations for the logical operators, =, :-), :and. :or, :not,

and :iX. llere is also a macro which converts logical constraints represented as a sentence of propositional

logic and converts it to an equivalent set of applications of add-clause. Thiere are also mechanisms for saving

partial RUP environments so that one can return to a known state during debugging.

5.1. Top Level Functions

assert (exp &optional (certainty *max-cert*))

This function first computes the term whose print name is exp and then calls virt-tms-node

to get a TMS node associated with this term. If the TMS without the premise controller is being

uscd then the function make-premise is called on the TMS node and the truth value :true. If the
TMS with the premise controller is being used then the function set-default is called on the

node, the truth value :true and the the certainty argument to assert (note that the default

certainty is *max-ccrt*). Finally this function applies multi-fifo-empty to the value of
*hasic-queues*.

retract (exp)

This function first finds the TMS node associated with the term whose print name is exp. It

then either calls retract-premise or remove-default on that node depending on which TMS is

being used. Thiis function applies multi-firo-empty to the value of *basic-queues.

=-noticer (eq-term) noticer for = on queue *equality-invariants*

his function is an intern noticer for applications of =. Since eq-term is an application of

= the second and third subterms of eq-term are the equated terms. The function virt-tms-node

is called to get a I'MS node representing eq-term and the function make-equality is applied to

the equated terms and the TMS node.

-)noticer (implication-term) noticer for :-) on queue *rp-top-level

This function is an intern noticer for applications of :->. This function adds clauses to the
TMS which ensure that the symbol :-) is interpreted as logical implication. For each

implication of the form (:-> p q) the following clauses are added: (each of the below clauses is

written as a list of disjuncts.
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(((:-> p q) . :false) (p . :false) (q . :true))
((p :true) ((:-> p q) . :true))
((q :false) ((:-> p q) . :true))

These clauses relate three TMS nodes: the node representing an implication (:-> p q). the

node representing the antecedent p, and the node representing the consequent q. Tlhc best way

to wiink about these clauses is that they force the TMS to make all possible deductions

concerning these three nodes. For example if the implication and the antecedent are true then

the consequent will be deduced via the first of the above clauses. If the antecedent is true and

the consequent is false then that same clause is used to deduce that the implication must be

false. If the antecedent is false then the second clause can be used to deduce that the

implication, and so on.

not-noticer (negation-term) noticer for not on queue *rup-top-level*

This function is an intern noticer for applications of not. For each negation of the form

(:not p) the following clauses are added:

(((:not p) :true) (p . :false))
(((:not p) . :false) (p . :true))

or-noticer (disjunction-term) noticer for or on queue *rup-top-level*

This function is an intern noticer for applications of or. A disjunction term can have an

arbitrary number of disjuncts. For each disjunction of the form. (:or p q ...) the following clauses

are added:

* (((:or p q ... ) . :false) (p . :true) (q . :true) ...
(((:or p q ... ) . :true) (p . :false))
(((:or p q ... ) . :true) (q . :false))

and-noticer (conjunction-term) noticer for and on queue *rup-top-level*

For each conjunction of the form (:and p q ...) the following clauses are added:

* (((:and p q ... ) :true) (p . :false) (q . :false) ...
(((:and p q .. ) false) (p . :true))
(((:and p q ...) . false) (q . :true))
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iff-noticer (log-eq-term) noticer for iff on queue 'rup-top-level*

This function is an intern noticer for applications of iff. This function adds clauses to the

TMS which constrain the truth of the TMS node associated with the logical equivalence term to

be the appropriate function of the truth values of the TMS nodes associated with the

cquivalenced terms. For each logical equivalence of the form (:iff p q) the following clauses are

added:

(((:iff p q) . :false) (p . :false) (q . :true))
(((:iff p q) :false) (p . :true) (q • false))
(((:iff p q) . :true) (p . :true) (q . :true))
(((:iff p q) . :true) (p . :false) (q • :false))

why (exp)

If cxp is a number then this function simply calls node-why on that number. Otherwise this
function gets the TMS node associated with the term whose print name is exp, then applies

multi-fifo-empty to *basic-queues, then calls node-why on that node. The following is a typical

top level R UP scenario.

(assert (-> p q))

(assert q r))

(assert 'p)

(why 'r)
"R IS :TRUE FROM:"
"1 Q IS :TRUE"
"2 (:-> Q R) IS :TRUE"

(why 1)
"Q IS :TRUE FROM:"
"1 P IS :TRUE"
"2 (:-> P Q) IS :TRUE"

(why I)
"P IS :TRUE AS A PREMISE"

(why 0)
"Q IS :TRUE FROM:"
"1 P IS :TRUE"
"2 (:-> P Q) IS :TRUE"

(why 0)

"R IS :TRUE FROM:"
"1 Q IS :TRUE"
"2 (:-'> Q R) IS :TRUE"

(why 2)
"(:-:. Q R) IS :TRUE AS A PREMISE"

I--
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try-to-show (cxp &optional rqucucs, snodcs (certainty *mnin-ccrt*))

A call to this function is equivalent to:

(node-(try-lo-show (virt-tnis-node (term cxp)) %:true rqucues snodes certainty)

T'he following scenario uses this function.

(assert (:>p r))

(assert (->q r))

(assert '(:or p q))

(why 'r)

"I DON'T KNOW WHETHER OR NOT R IS TRUE'

(try-to-show 'r)

(why 'r)
"R IS :TRUE FROM:"
"1I:- P R) IS :TRUE"
"2 Q:> R) IS :TRUE"
'3 (:OR P Q) IS :TRUE"

what-is (cxp)

I'llis function is Meined as follows:

(defun what-is (Lxp)

(Sbound (term exp)))

% hy- is (cxp)

T'his function is dcfincd as follows:

(del'un why-is (exp)

(why '(- exp ,(sbound (term exp)))))

tcrmq (exp)

This macro is very much like backquote in LISP. If cxp contains no "special" symbols
then this macro takes an expression and macroexpand to a form which will evaluate to the term
whose print name is that expression. Special symbols are those which start with either 'T? or "I".
It is assumed that symbols starting with 'T' will be bound to terms at eval time and that symbols
starting with" I" will be bound to lists of terms. The following are examples of macroexpansions

of this form:
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(termq (f a)) W.> (term -(f a))

(termq (f ?a)) - (term-hashcons (list (term 'f) ?a))

(termq (g .largs)) we> (term-hashcons (cons (term 'g) largs))

lconst (exp)

This is a very useful macro for adding clauses in the TMS. This macro takes a logical
expression and macrocxpands to a set of add-clauses representing that expression. This macro

treats symbols starting with "T' or "I" in much the same as does termq. The following is a list of
samplc macroexpansions:

(iconst (--> (:and pl p2 p3) r))

*->(add-clause (list (cons (vlrt-tms-node (term 'p1)) ':false)
(cons (virt-tms-node (term 'p2)) 'false)
(cons (virt-tms-node (term 'p3)) ':false)
(cons (virt-tms-node (term 'r)) ':true)))

(lconst (:->. (:and (forall (x) (:-> (p x) (q x)))
(p ?a))

0q ?a)))

-->(add-clause (list (cons (vlrt-tais-node
(term '(forall (x) (:-> (p x) (q x)))))
:false)

(cons (vlrt-tms-node
(term-hashcons (list (term 'p) a)
'Jalse)

(cons (virt-tms-node
(term-hashcons (list (term 'q) ?a)))
:true)))

(lconst (:lff p q))

.u>( progn
(add-clause (list (cons (virt-tms-node (term 'p)) :false)

(cons (virt-tms-node (term 'q)) ':true)))
(add-clause (list (cons (vlrt-tms-node (term 'p)) *:true)

(cons (vlrt-tms-node (term 'q)) *:false))))

Note that (lconst (:-> p q)) is different from (assert (:-> p q)) in that the former does not
create a term or a tais node representing (:-> p q) but instead simply installs a clause in the TMS.
while the latter creates a term and a TMS node representing (:-> p q) and then asserts that that

TMS node is true.

assertq, retractq. whyq, try-to-showq, what-isq, why-isql

Thlese macros are just like assert, retract, etc. except that they use tcrmq to quote there
arguments. Thus (assertq p) is just like (assert (tennq p)).
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5.2. Initialization

When trying to debug code which interacts with the utilities in RUP it is easy to become confused about

the current state of the RUP environment. It would be nice to be able to save the statc of the RUP

environment at some point and be able to rcturn to that state at some latter point. This section describes siome

features of RUP which approximate this behavior.

terin-init 0

This function of no arguments flushes all existing terms so that any term which is

subsequently returned from either the function term or the function ternn-hashcons is a

completely new data structure. Ibis has serious ramifications for the RUP environment. It

means that there are no longer any noticers attached to any accessible operator terms (since

those terms are new structures and have no noticers attached). It means that the simplification

properties attached to terms have been effectively flushed. It means that the commutative and

associative properties of operator terms have been flushed.

*perin-init-forins* variable

Ibis variable is bound to a list of LISP expressions which get evaluated when RUP is

initialized and thus the forms on this list determine the state of RUP which results from an

initialization. Ibis is the mechanism provided by RUP for "saving" or "defining" RUP

environments. The default value of *pcrn-init-forns* is a list of forms which restore the default

RUP environment. The forms in *peni-init-forms get evaluated in the reverse of the order in

which they appear. Thus the last thing pushed onto the list is the last thing evaluated during

initialization. It is important that any forms which change the intern canonicalization process

are evaluated before the interning of any term affected by that change. For example it is
important that the term for = be marked as commutative before any applications of that term

are interned.

*temp-init-forms* variable

This variable is just like *perm-init-forms* except that its default value is nil. The intended
use of this variable is described in the below documentation of the functions fix-temps and

rup-init.
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fix-temps 0

This function of no arguments is defined as follows:

(defun fix-temps (I
(setq *perm-intt-forms* (append *temp-ntt-forms* Operm-intt-forms*))
(setq *tamp-tnit-foras* nil))

The basic philosophy behind this function is that as one develops a RUP environment one

can push forms onto *temp-init-forms* which will to some extent rccreate the environment

being developed. Then when one wishes to store that environment so that it will be

reconstructed after an initialization one calls the function fix-temps.

rup-init (&optional save-flag)

This function calls term-init, and evaluates the forms in *perm-init-forms* in the reverse of

the order in which they appear on the list (i.e. the forms are evaluated in the order in which they
were placed on the list). Finally if the save-flag argument is not nil it evaluates the forms on
*temp-init-forns* in reverse order. If the save flag is nil then it sets *tcmp-init-forms* to nil.
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6. THE NOTICE MACRO

lIbis section describes a macro which is used to define demons which trigger on certain events in the

R UP environment.

notice ((event pattern) queue &rest body-forms)

The notice macro defines demons which are queued when certain events take place in the

RUP environment. The event argument must be one of several meaningful keywords and the

pattern argument is an expression which may contain "variables" which are symbols starting

with either '?" or "I". The queue argument must be a form which evaluates to a queue and the

body-forms can be any lisp expressions to be evaluated when the demon runs (i.e. they are the

body of the demon). The details of the notice macro are best described through examples.

Initially only the keyword :intcrn will be considered.

6.1. Creating Intern Noticers

When an application of notice is macroexpanded two function definitions are created by side effect and

the notice form macroexpands to an application of add-hashcons-noticer. The function definitions must be

explicitly evaluated using the macro include-end-forms. Consider the following example:

(notice (:intern (p ?a)) Ouser-queue*

(1const (-> (p ?a) (q ?a))))

(Include-end-forms)

"'his macrocxpands to:

(progn (add-hashcons-noticer (term 'p) 'I(P ?A)-UNIFIERI *user-queue*)
(push '(add-hashcons-notlcer (term 'p) 'I(P ?A)-UNIFIERI *user-queue*)

temp-init-forms*))

(progn 'compile

(defun I(P ?A)-UNIFIERI (term)
(let ((ergs (cdr (subterms term))))
(if ergs
(let ((?a (car ergs)))

(If (null (cdr args))
(I(P ?A)-SODYI ?a))))))

(defun I(P ?A)-BODYI (?a)
(add-clause (list (cons (virt-tus--node

(term-hashcons (list (term p) l)))
S:false)

(cons (virt-tas-node
(term-hashcons (list (term 'q) ?a)))' :true)))))
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In the above expansion the notice form macroexpands into a progn which both installs a symbol as a

noticer and pushes a form onto tnp-init-forms' ('temp-init-fonns' can be used to re-create a RUP

cnvironment during initialization as is described elsewhere). Because the demons created by notice are

j imnplemented as intern noticers associated with operator terms it is important that the car of the pattern not

conitain variables to be bound during the triggering process. The form (include-cid-fonns) macroexpands into

alist of function definitions. T1he first function defined in the above example takes the term and performs the

urfiainof the term and the pattern. ''he second function takes the bindings derived from this unification
ard executes the body of the noticer. The need for two functions (as opposed to a single function which does

both unification and executes the body) involves keywords other than :intern. 'Ihe need for includecnd-forms

should be clear from the following more complex example involving embedded demons.

(notice (:intern (function-from ?f ?domain ?range)) $user-queue*
(notice (:intern (?f Ux)) *user-queue*

(1const (-> (and (function-from ?f ?domain ?range)
(?domain Ux))

(?range (?f ?x))))))

(include-end-forms)

Tlhe above inacroexpands to:

(progn (add-hashcons-noticer (term 'function-from)
1I(FUNCTION-FRoM ?F ?DOMAIN ?RANGE)-UUXFIERI
*user-queue*)

(push '(add-hashcons-nuticer (term 'function-from)
'I(FUNcTION-FROM ?F ?DOMAIN ?RAUBE)-UNIFIERI
*user-queue*)

otemp-lnlt-formso))

(pragn 'compile
(defun I(FUNCTION-FROM ?F ?DOMAIN ?RAI4GE)-UNIFIERI (term)

(let ((ergs (cdr (subterms term))))
(if args
(let ((?f (car ergs)))
(if (cdr ergs)

(lot ((?domain (cad' ergs)))
(if (cddr args)

(let ((?range (cmddr args)))
(if (null (cdddr ergs))

(g(FUNcTION-FROM ?F ?DOMAIN ?RAIIGE)-SODYI
?f ?domain ?range))))))))))

(defun g(FUNCTION-FROM ?F ?DOMAIN ?RANGE)-BODYI (?f ?domain ?range)
(add-hashcons-noticer ?f

(lambda (term)
(1(?F ?X)-UNIFIERI term ',?f 'jdomaln '.?range))

*user-queue*))

(defun I(?F ?X)-UNIFIERI (term ?f ?domain ?range)
(let ((ergs (cdr (subterms term))))
(if args
(let ((?A (car ergs)))

(if (null (cdr ergs))
(I(?F ?X)-IOOYI Ui ?f ?domain ?renge))))))
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(defun I(?F ?X)-BODYI (?x ?f ?domain ?range)
(add-clause (list (cons (virt-tms-node

(term-hashcons
(list (term 'function-from)

?f ?domain ?range)))
' :false)

(cons (virt-tms-node
(term-hashcons (list ?domain ?x)))
.:false)

(cons (virt-tms-node
(term-hashcons
(list ?range

(term-hashcons (list ?f ?x)))))
:true)))))

The embedding of the notice macro in the above example is very similar to embedding of PLANNER or

AMORD dchi.ons. 'Ilic variables in the inner demon inhcrit their bindings from the outer dcmon. In any use

of notice the car of the pattern must not contain variables to be bound during triggering. However the car of

the pattern may contain variables which are bound outside the notice construct. Note that the internal notice

form macroexpands to an application of add-hashcons-noticer involving the function (?F ?X)I (the variable

*tenip-init-forlns* is not effected by the inner noticcr). Without the macro include-end-fomis it would be very

hard for the internal notice form to define functions in such a way that they could be compiled.

6.2. Naming Conventions for Nolicer Functions

Two functions are defined by side effect each time an application of notice is macroexpanded. Each

function is given a name which is a symbol interned in the RUP package (or simply an interned symbol in

MACLISP). The names of the functions are derived from the pattern in the notice form (as shown in the

above examples). However special care has been taken to allow for more than one demon with the same

pattern. For example the following

(notice (:intern (p ?x)) ...

(notice (:intern (p ?x)) ...

(notice (:intern (p ?x)) ...

( include-end-forms)

macroexpand to:

(progn (add-hashcons-notlcer (term 1p) *I(P ?X)-UUIFIERI ...)
(push '(add-hashcons-noticer ...)

Otemp-init-forms*))

(progn (add-hashcons-notlcer (term 1p) 1I(P ?X)-2-ULiIFERI ... )
(push *(add-hashcons-noticer ...)

stemp-init-formso))

(progn (sdd-hashcons-noticer (term 1p) 'I(P ?X)-3-UMIFIERI ... )
(push '(add-hashcons-noticer ...)

otemp-init-formse))

I . . . .. . . . . . i , . . . . .
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(progn 'compile

(defun I(P ?X)-UNIFIER I (term)

(defun I(P ?X)-UOOYI (x)

(defun l(P ?X)-2-UNIFIERI (term)

(defun l(P ?X)-Z-BODYI (x)

(defun I(P ?X)-3-UNIFIERI (term)

(defun l(P ?X)-3-BODYI (x)

In spite of the function naming convention exemplified above naming conflicts can occur when two

demon defining files share a triggcr pattern and at least one of the files is compiled. Specifically when a
compiled flile is loaded the names of the functions defincd by that file arc the names given at compile time

rathcr the names which would havc bcen generated had the demon definitions been macroexpandcd at load

time. Consider a compiled file containing a definition for the function I(P ?X)-BODYI. If such a file is loaded

into a RUP environment which already has a definition for J(P ?X)-I3ODYj a naming conflict will occur. It is

also important to note that since loading a compiled file does not induce macro expansions it also does not

effect the names generated by later macro expansions. The best policy is to make sure that no two files share

noticcr patterns.

6.3. Events

Ilere are several meaningful event keywords other than :intern. These event keywords are described

below.

:true

Demons defined using this keyword arc triggered whenever the TMS node associated-with

a term matching the given pattern becomes true. The following example demonstrates the use

of this function.

(notice (:true (p ?x)) *user-queue*

(1const (-> (p ?x) (q ?x))))

(Include-end-forus)

Ibis macroexpands to:

.. .IIl l i .. . .x . . .., ... . ....... .
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(progn (add-hashcons-noticer (term 'p) IJ(P ?X)-UNIFIERI Ouser-clwue.)
(push '(add-hashcons-noticer (term 'p) 'I(P ?X)-UNIFIERI Ouser-quoug*)

*temp-init-forms*))

(Progn *compile
(defun I(P ?X)-UNIFIERI (term)

(let ((args (cdr subterms)))
(if args
(let ((?x (car args)))
(if (null (cdr args))

(I(P ?X)-BOOYI term ?x))))))

(defun I(P ?X)-BODYI (term UA)
(if (not (eq ':true (truth (virt-tms-node term))))
(push (cons *user-queue*

(I(P ?X)-BODYI *term .?x))
(true-noticers (wirt-tus-node term)))

(add-clause (list (cons (virt-tms-node
(term-hashcons (list (term *p) ?x)))
' :false)

(cuns (vlrt-tms-node
(term-hashcons (list (term *q) ?x)))
.:true))))))

Note that the code flor I(P ?X)-BO[)YJ first checks to see if thc tins node associated with
triggering ternm is true. If it is not then a call to I(P ?X)-11OI)YI is placed on thc truc-noticers of
thc node associated with the triggering term. Note that since a nodc can become truc and then
unknown before its true-poticers arc run I(P ?X)- BODYI might bc run several times beore it is
run in an environment in which the nodc associated with the triggering term is true.

:false

This keyword is just like :true except that the demon is queued when the node associated
with the triggering term becomes false rather than true.

:change

This keyword causes the demon to be queued the first time the truth of the node associated
with the triggering term changes.

:whencver-tnae

Ibis keyword causes the body of the demon to be run whenever the node amoclated with

the triggering term becomes true. For example the following

(notice (:wftenever-true (trouble ?x)) *user-queuh*
(trouble-fixer ?x))

(include-end-torms)

Gives rise to the following definition:



6. THE NOTICE MACRO -42- April 19112

(defun I(TROUSLE ?X)-UODYI (term Tx)
(push (cons *user-queue*

*(i(TROUBLE ?X)-BODYI term .?x))
(true-noticers (virt-tms-node term)))

(if (eq ':true (truth (virt-tms-node term)))
(trouble-fixer ?x)))

:. hancver-false

This is the dual of :whenever-true.

:A bhnver-change

"Ibis causes the body of the demon to be run every time the tins node associated with the

triggcring term changes its truth state.

6.4. List Variables

It is often desirable to be able to write demons which trigger on terms with an arbitrary number of top

level arguments. A mechanism for doing this exists and is exemplified by the following definition of a noticer

for list.

(notice (:intern (list . targs)) *user-queue*
(let ((?first (car targs)))

(lconst (-> list-definition
(- (first (list . lorgs)) ?first))))

(if (cdr targs)
(let (([rest (cdr largs)))

(1const (-> list-definition
((tail (list . taros)) (list . Irest)))))))

A Symbol starting with "!" is interpreted as a variable in a noticer trigger pattern and differs from a
symbol stwrting with "?" only in that it is bound to a list of terms rather than a single term. An error is

triggered if either "?" or "I" variables are used in a syntactically incorrect manner.

6.5. Some Useful Macros

This section describes some macros which can be used in conjunction with notice.

nlet

The macro nlet is just like the macro let except that it expands notice forms which appear

in its body and allows those notice forms to inherit variables bound by the nlet. notice forins can

only inherit variables bound by surrounding notice and nlet contexts. The fbllowing is an

example of" the use of nt:

iA
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(notice (:intern (f' largs)) *user-queue*
* (niat ((?first (car large)))

(notice (:true (r ?frst, ?other-thing)) *user-queue*
(let ((lother-args (cons ?other-thing (cdr large))))
(1const ( (r Mfrst ?Other-thing)

sel (.(f .largs) (f . other-args))))))))

'l'is macro of no argumecnts is used insidc the body of a notice form. An application of self

macroexpands to a form which evaluates to a form which can be placed on a queuec and is in ract

the current invocation of the body of the innermost demon. Considcr the following example:

(notice (:true (p Ux)) *user-queue*
(niet ((ni (vlrt-tms-node (termq (p Tx)))))

(notice (:true (q ?x)) *user-queue*
(if (not (true? n1))

(push (cons *user-queue* (self))
(true-noticers n1))

(let ((n2 vlrt-tms-node (termq (p ?x))))
(if (not (true? n2))
(push (cons *user-queue* (self))

(true-noticers n2))
(print '((p *(term-tree Ux))

and '(q (term-tree Ux))
are both true))))))))

Note that the print statement will only be reached in an RUP environment where both the

nodes associated with the triggering terms are true. If the body of the inner noticer is nmn in an

environment where the node associated with the first triggering term is false (which can happen)

then an execution of the body is requecd. Thei macro self creates a new invocation of the
innermost notice body with the current binding environment. Punng subsequent invocations of

this body either node may be false and the body continues to requeue itself until it is invoked
when both nodes are true.

this-noticer

The macro this-noticer of no arguments macroexpands to a form which evaluates to the

intern noticer placed on an operator ternm by the innermost notice form containing this macro.

This allows one to get access to the noticer and remove it once it has fired. Consider the

following example:

(notice (:true (p Tx)) ueer-queae*
(notice (:true (r Ux Ty)) *user-queue*

(setf (intern-noticers (term 'r))
(delete (this-noticer) (imtern-neticers (term 'r))))

4 The above code might be used when it is known that for any ?z there is at most one 91y such

that (r ?x ?y). Thus when a term triggers the inner demon the intern notice placed on r can be

* removed thus saving a unification attempts each time some new application of r is interned.
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There are cleaner ways to gain efficiency than removing noticers. The section on currying

is important for anyone worried about efficiency in demonic triggering.

mapfetch ((var pattern) &rest body-forms)

This macro allows one to access exactly those currently interned terms which match a given

pattern. For each such term the body forms are evaluated sequentially in ar environment in

which the variable var is bound to the matching term and all of the variables in the pattern are

bound to the terms resulting from the match. nmpfetch returns a list of the values given by the

last body form. The fact that the pattern is known at macroexpansion time allows the unification

process to be open coded as it is in the functions created by notice. Consider the following

example:

(mapretch (uterm (p ?x (f ?y)))
(cons uterm

(list (cons '?x ?x) (cons '?y ?y))))

This evaluates to a list of pairs each of which is a pair of a term and a binding list where

each binding list is a list of pairs of a variable and its associated value. mapretch can inherit

variable bindings from surrounding notice and nlet fi)rms as is shown in the following example.

(notice (:true (p ?U)) Ouser-cueue*
(putprop (term-plist ?X)

(mapfetch (uterm (r ?x ?y))

?y)
'r-relations))

T7he body function defined by this noticer would be as follows:

(defun I(P ?X)-BODYI (?U)
(putprop (term-plist ?x)

(del-if 'null
(mapcar '(lambda (uterm)

(let ((ergs (cdr (subterms uterm))))
(if ergs

(if (eq ?U (car ergs))
(if (cdr ergs)

(let ((?y (cadr ergs)))
(if (null (cddr ergs))
?Y)))))))

(applications (term 'r))))
Ir-relations))

1" ; -. ... l " J i' " I i I .. . . .. 1. . . . . .. . ..1 " ". .... . . .l .. ... . . ... .
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An alternative to the above is:

(defmacro r-relations (term)
(get (term-plist term) 'r-relations))

(notice (:true (p x)) Or-queue*
(notice (:whenever-change (r Tx ?y)) r-queue*

(if (true? (virt-tms-node (termq (r x Ty))))
(if (not (memq ?y (r-relations Ux)))

(push ?y (r-relations Tx)))
(setf (r-relations Ui)

(delete ?y (r-relations ?x))))))

The above code ensures that if *r-queue* is empty the for each ?x such that (p ?x) is true

(r-relations ?x) is a list of exactly those terms ?y such that (r ?x ?y) is true.

6.6. Currying

This section describes a technique for writing more efficient demons. The basic idea is that when one

has a trigger pattern of the form (p tl ?x t2) where ?x is a variable and tl and t2 are known terms one can

replace that trigger pattern by a pattern of the form (op ?x) where op is a known term incorporating p. tl, and

t2. In this way the unification function is not applied to all applications of p but is instead only applied to a

select set of terms which contain the known subterms tl and t2.

'There are some conventions adopted in RUP for making this type of transformation more convenienL

Specifically there is a special higher order operator called curry which takes any number of arguments the first

of which is always an operator and the remainder of which are either the number I or the number 2. Each of

the numeric arguments to curry corresponds to an argument of the operator argument to curry. The best way
to describe curry is with some examples. For any binary operator ?r, three place operator ?f, and terms x 9y

and ?z we have the following equivalences:

(?r TU ?y) - (((curry ?r 1 2) x) ?y)
(((curry ?r 2 1) ?y) Ui)

(?f ?x ?y ?z) - (((curry Tf 1 1 2) TU ?y) ?z)
" (((curry ?f 1 2 1) x Tz) ?y)
" (((curry ?f 2 1 1) ?y Ui) t)
" (((curry ?f 1 2 2) Ti) ?y ta)
" (((curry Tf 2 1 2) ?y) Ui ?z)
" (((curry Tf 2 2 1) Ti) Ti ?y)

The above equivalences are enforced by a collection of demons which could have been defined using

notice as follows:

(notice (:intern (curry ?f 2 1 2)) *rup-top-level*
(notice (:intern (?f Ti ?y ?z)) srup-top-levele

(iconet (a (?f Ui ?y ?Z)
(((curry ?f 2 1 2) ?Y) TU ?)))))

These demons are only triggered when curry is used so there s no overhead for users who do not use

currying. However if currying is ever used in writing efficient noticem the above demons ensure that the

correctly curried versions of the aplropriate assertions are always created. The curry demons are hand coded

.. ..
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for maximal cfficiency.

The following example illustrates the use of currying for efficiency.

(notice (:true (transitive ?r)) Orup-top-level*
(notice (:intern (?r ?x ?y)) *rup-top-level*

(notice (:intern (((curry ?r 1 2) ?y) ?z)) *rup-top-level*
(iconst (-> (and (transitive ?r)

(?r ?x Ty)
(((curry ?r 1 2) ?y) ?z))

(((curry ?r 1 2) ?x) ?z))))))

Note that while all uncurried forms aie equated with their curried equivalents the curried forms are not

* necessarily equated with their uncurried equivalents. Thus interning the tern (r a b) will trigger an intern

demon whose pattern is (((curry r 1 2) ?x) 9y) but intening the term (((curry r 1 2) ?x) ?y) will not trigger an

intern demon whose trigger pattern is (r ?x ?y). This fact can be important to writing erfnicicnt demons (and is

in fact important in the above example).

l he function term-tree recognizes curried forms and uncurries them which makes them much more

readable.

6.7. Redundancy and Completeness

There are some problems with the pattern directed demonic invocation mechanisms described in this

section. These pioblems relate both to the redundant triggeiing of demons (triggering a demon more often

than need be) and to the completeness of triggering (not triggering demons when they should be triggered).

Consider the following demon for pair.

(notice (:intern (pair ?a (list . Irest))) *user-queue*
(iconst (-> list-definition

(- (pair ?a (list . treat))
(list ?a . trest))))

Suppose the term (pair a (list b c)) has been interned and that the above demon has been triggered on

this term. Further suppose that the equality (= a'nil) is true. Some process may create the term

(pair 'nil (list b c)) as the result of substituting 'nil for a in (pair a (list b c)). If the above demon has been

triggered on (pair a (list b c)) then there is no reason to trigger it on (pair 'nil (list b c)) since these two terms

can be equated by substitution. However when the latter term is interned the above intern demon would be

triggered.

The result of matching a demon pattern against a particular term is a binding environment e which maps

the variables in the pattern to terms. In general two binding environments e1 and e2 will be called variants of

each other if they are defined on the same domain of variables and for each variable ?x in that domain el(?x)

.nd e2 (?x) are in the same RUP equivalence class. In general a specific invocation of a demon under a binding

environment e will be called redundant if that demon has already been run under a binding environment

which is a variant of e. RUP attempts to avoid executing redundant demon invocations by not triggering

demons with terms which are generated internally via the substitution of equals for equals. Unfortunately

there are cases in which it is useful to run redundant invocations of a demon. For example consider the

4 .I*"
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following:

(notice (:lntern (cons ?a ?b)) *user-queue*
(if (and (eq 'quote (car (subterms ?a)))

(eq *quote (car (subterms ?b))))
(let ((?qterm (term '(quote .(cons (cadr (subtermes ?a))

(cadr (subterms ?b)))))))
(iconst (-> cons-definition

(- (cons ?a ?b) ?qterm))))))

Clearly the demon has an important effect when run under a binding environment e which binds the
variables to quotations even if the demon has previously been run on a variant of e which did not bind the

variables to quotations. The reason the redundant invocation is useful in this case is that the body of the

demon tests for syntactic properties of the terms to which the variables are bound. If the body of a demon

only uses variables in "semantic" ways then this problem would not arise. A variable is used in a semantic

way when it does not matter what term the variable is bound to as long as that term refers to the proper thing.

One possible extension to the existing demonic mechanisms which might solve the problems related to

redundant triggering is to introduce a new kind of variable into the patterns of demons which would only

bind to self-referential terms. This would allow the syntactic tests made in the above demon to be

incorporated into the pattern match and thus one might be able to automatically control demonic invocation

in a way that avoids redundant invocations yet still invokes syntactic demons with the proper binding

environments.

In addition to having problems with redundant invocations RUP has a problem in that the demonic
invocation mechanism is not complete. Consider the following demon:

(notice (:intern (f (g ?x))) *user-queue*
(lconst (-> f-g-definitions

(f (g ( ?X)) ?x))))

Suppose that the term (rb) his been interned and that b and (g c) are in the same equivalence class. By
substitution it would be possible to generate the term (f(g c)) and the above demon could trigger on this term.

However since such substitutions are not performed automatically the above demon would not be triggered in

this case.

For any expression p containing variables (i.e. any trigger pattern) and any substitution e for the
variables in p let e(p) denote the result of replacing each variable in p by its image under e. Let T be any

collection of terms and p be any trigger pattern. A substitution e will be said to map p into T just in case e(p)

is equivalent (can be equated via substitution of equals for equals) to some term in T. Let [pi] be a collection

of trigger patterns each of which is associated with a body bi. A particular demonic invocation mechanism will

be said to be complete with respect to {pi} and T just in case for every pi and every binding context e which

maps pi into T the body bi gets called under some binding context which is a variant of e.
It should be possible to extend the demonic invocation mechanism in RUP so that it bs complete with

respect to the intern demons and the interned terms, the true demons and the true terms, etc. If the demonic

invocation mechanism were also careful not to perform redundant Invocatins such an extension to

completeness would probably not generate an unreasonable number of demon invocations.
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The problem of generating a complete unification mechanism has been studied in detail by people

working on resolution theorem proving. The problem is defined precisely by Huct and Oppcn in a survey of

results on equations and rewrite rules [Huct & Oppen 791.

6.8. Transitive Relations

lere arc true noticers defined in the default RUP environment which recognize applications of the

second order predicates transitive, reflexive, antisynumetric and strictly-antisymmetric. Assuming that the

queues *equality-invariants*, *rup-top-level*. and *backtracking-invariant* have all been emptied the

following conditions hold with regard to these predicates:

(1) If an assertional term of the form (transitive r) is true then all applications of r which can be deduced

from transitivity and known applications of r have been deduced.

(2) If an assertion of the form (reflexive r) is true then for each interned term of the form (r x y) if x andy are

in the same equivalence class then (r x y) is true.

(3) If an assertion of the form (antisymmetric r) is true then for each pair of true assertions (r x y) and (r y x)

the assertion (= x y) is true.

(4) If an assertion of the form (strictly-antisymmetric r) is true then for each true assertion (r x y) the

assertion (r y x) is false.

4
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